App Logo

No.1 PSC Learning App

1M+ Downloads
i+j+k , 2i-2j+2k എന്നീ സാധിശങ്ങൾക്കിടയിലെ കോണളവ് ?

Acos1(2/3){cos}^{-1}(2/3)

Bcos1(1/6){cos}^{-1}(1/6)

Ccos1(5/6){cos}^{-1}(5/6)

Dcos1(1/3){cos}^{-1}(1/3)

Answer:

cos1(1/3){cos}^{-1}(1/3)

Read Explanation:

cosθ=a.babcos\theta= \frac{\overset{\rightarrow}{a}.\overset{\rightarrow}{b}}{|\overset{\rightarrow}{a}||\overset{\rightarrow}{b}|}

=22+23×23=13=\frac{2-2+2}{\sqrt{3} \times2\sqrt{3}}=\frac{1}{3}

θ=cos1(1/3)\theta=cos^{-1}(1/3)


Related Questions:

a=5,b=6,a.b=25|\overset{\rightarrow}{a}=5|, |\overset{\rightarrow}{b}|=6, \overset{\rightarrow}{a}.\overset{\rightarrow}{b}=-25 ആയാൽ a×b=|\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}|=

solve 4y"-25y' = 0

a=βi+2j+2k,b=2i+2j+βk\overset{\rightarrow}{a}=\beta i+2j +2k , \overset{\rightarrow}{b} = 2i + 2j + \beta k എന്നീ സദിശങ്ങൾ ലംബങ്ങളായാൽ a+bab=|\overset{\rightarrow}{a}+\overset{\rightarrow}{b}|-|\overset{\rightarrow}{a}-\overset{\rightarrow}{b}|=

xi -2j + 5k , i + yj -zk എന്നീ സതീശങ്ങൾ സമരേഖീയമാണ് എങ്കിൽ xy²/z =

a\overset{\rightarrow}{a} ഒരു ഏകക സദിശമാണ് ,(</span>xa).(x+a)=12(</span>\overset{\rightarrow}{x}-\overset{\rightarrow}{a}).(\overset{\rightarrow}{x}+\overset{\rightarrow}{a})=12 ആയാൽ x\overset{\rightarrow}{x} ന്ടെ വലിപ്പം എത്ര?