What is the difference between the lines 2x+y=2 and 6x+3y=-6 ?A4/√5B4/3C√5/4D4/25Answer: A. 4/√5 Read Explanation: 2x+y=22x+y = 2 2x+y=2Slope=−coefficientofxcoefficientofySlope =\frac{ - coefficient of x}{ coefficient of y}Slope=coefficientofy−coefficientofx−21=−2\frac{ -2}{1} = -21−2=−26x+3y=−6 6x+3y = -6 6x+3y=−6slope=−63=−2slope = \frac{-6}{3} = -2slope=3−6=−2 M₁ = M₂ lines are parelleld=∣c1−c2∣a2+b2d=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}d=a2+b2∣c1−c2∣2x+y−2=0−−(1)2x+y-2=0--(1)2x+y−2=0−−(1)6x+3y+6=0−−(2)6x+3y+6=0--(2)6x+3y+6=0−−(2)(1)×3=6x+3y−6=0−−(3)(1)\times3 = 6x+3y-6=0 -- (3)(1)×3=6x+3y−6=0−−(3)d=∣c1−c2∣a2+b2=6−−636+9d=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}=\frac{6--6}{\sqrt{36+9}}d=a2+b2∣c1−c2∣=36+96−−6d=1245d=\frac{12}{\sqrt45}d=4512d=129×5d=\frac{12}{\sqrt{9 \times 5}}d=9×512d=1235d=\frac{12}{3\sqrt5}d=3512d=45d=\frac{4}{\sqrt5}d=54 Read more in App