3y2−x2=108
$$\frac{3y^2}{108}-\frac{x^2}{108}=\frac{108}{108}$
$\frac{y^2}{36}-\frac{x^2}{108}=1$
comparing with the equation of hyperbola
$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$
$a^2=36;b^2=108$
$eccentricity=e=\sqrt{1+\frac{b^2}{a^2}}$
$=\sqrt{1+\frac{108}{36}}$
$=\sqrt{1+3}=\sqrt{4}=2$