App Logo

No.1 PSC Learning App

1M+ Downloads
What is the greatest number of six digits, which when divided by each of 16, 24, 72 and 84, leaves the remainder 15?

A999981

B999951

C999963

D999915

Answer:

B. 999951

Read Explanation:

L.C.M ( 16,24,72 ,84) = 1008 dividing 999999/1008 = 63 (remainder) 999999 - 63 = 999936 This number 999936 is completely divisible by 16,24,72 and 84 15 is the remainder on dividing by them required number = 999936 + 15 = 999951


Related Questions:

216, 72, 30 ഇവയുടെ ഉ.സാ.ഘ. കാണുക:
3,6,2 ഈ സംഖ്യകളുടെ ല.സാ.ഗു എത്ര?

The greatest among6100^6\sqrt{100}and312^3\sqrt{12}and3\sqrt3 is:

The LCM and HCF of 2 numbers are 168 and 6 respectively. If one of the numbers is 24, find the other?
ഗ്രൂപ്പിലെ മറ്റുള്ളവയിൽ നിന്ന് വ്യത്യസ്തമായ നമ്പർ ജോഡി തിരഞ്ഞെടുക്കുക