Challenger App

No.1 PSC Learning App

1M+ Downloads

What is the remainder when (255+323)(2^{55}+3^{23}) is divided by 5?

A0

B1

C2

D3

Answer:

A. 0

Read Explanation:

Shortcut Trick

(255+323)(2^{55}+3^{23})

Power of 2 = 55÷455\div{4} = Remainder is 3 

Power of 3 = 23÷423\div{4} = Remainder is 3 

Then,

(23 + 33) ÷ 5

⇒ (8 + 27) ÷ 5 

⇒ 35 ÷ 5 = 7, which means here remainder is 0.

Alternate Method

We can write, 255 = (24)13 × 23

⇒ Unit digit (255) = Unit digit (1613 ×\times 8)

⇒ Unit digit (255) = Unit digit (613 ×\times 8)

⇒ Unit digit (255) = Unit digit (6 ×\times 8) = 8

Similarly

,

We can write, 323 = (34)5 ×\times 33

⇒ Unit digit (323) = Unit digit (815 ×\times 7)

⇒ Unit digit (323) = Unit digit (15 ×\times 7)

⇒ Unit digit (323) = 7

Now,

Unit digit (255 + 323) = Unit digit (8 + 7) = 5

∵ When 5 is divided by 5, the remainder is 0

∴ When (255 + 323) is divided by 5, the remainder is 0.


Related Questions:

Summation of 4A3 and 984 is equal to 13B7 and if 13B7 is divisible by 11 then find 3A + 4B.
Find the number of 2-digit numbers divisible by both 2 and 4.
The smallest 1-digit number to be added to the 6-digit number 405437 so that it is completely divisible by 11 is:

If a thirteen - digit number 507x13219256y is divisible by 72, then the maximum value of 5x+3y\sqrt{5x+3y} will be.

തന്നിരിക്കുന്ന സംഖ്യകളിൽ ഏതിനെയാണ് 2, 3, 5 കൊണ്ട് കൃത്യമായി ഹരിക്കാൻ കഴിയുന്നത് ?