Challenger App

No.1 PSC Learning App

1M+ Downloads
What is the sum of the mean proportional between 2.8 and 17.5 and the third proportional to 8 and 12?

A28

B24

C25

D20

Answer:

C. 25

Read Explanation:

Solution:

Given:

Numbers =  2.8 and 17.5

Formula used:

(a, b) mean proportional (x) =ab=\sqrt{ab}

(a, b) third proportional (y) =b2a=\frac{b^2}{a}

Calculations:

Mean proportional (x) =(2.8×17.5=\sqrt{(2.8\times{17.5}}

=49=\sqrt{49}

⇒ 7 

Third proportional (y) = (12 × 12)/8

⇒ 144/8

⇒ 18

x + y = 18 + 7

⇒ 25

∴ The sum of the mean proportional between 2.8 and 17.5 and the third proportional to 8 and 12 is 25.


Related Questions:

മണലും സിമൻറും 4:1 എന്ന അംശബന്ധത്തിൽ ചേർത്ത് കോൺക്രീറ്റ് ഉണ്ടാക്കണം. 40 ചാക്ക് സിമൻറിന് എത്ര ചാക്ക് മണൽ ചേർക്കണം ?
The fourth proportion of 12, 24 and 45 is:
രണ്ട് സംഖ്യകൾ 4: 5 എന്ന അംശബന്ധത്തിലാണ്. അവയുടെ ലസാഗു 140 ആയാൽ വലിയ സംഖ്യ ഏത് ?
A certain sum of money was distributed among Darshana, Swati and Nivriti. Nivriti has Rs. 539 with her. If the ratio of the money distributed among Darshana, Swati and Nivriti is 5 : 6 : 7, what is the total sum of money that was distributed?
A bag contains Rs. 550 in the form of 50 p, 25 p and 20 p coins in the ratio 2 ∶ 3 ∶ 5. The difference between the amounts that are contributed by the 50 p and the 20 p coins is: