App Logo

No.1 PSC Learning App

1M+ Downloads
What is the value of cos[(180° – θ)/2].cos[(180° – 9θ)/2] + sin[(180° – 3θ)/2].sin[(180° – 13θ)/2]?

Asin2θ.sin4θ

Bcos2θ.cos6θ

Csin2θ.sin6θ

Dcos2θ.cos4θ

Answer:

B. cos2θ.cos6θ

Read Explanation:

Solution: Formula used: cos(-θ) = cos θ 2 sin A.sin B = cos(A – B) – cos(A + B) 2 cos A.cos B = cos(A + B) + cos(A – B) cos C + cos D = 2 cos(C + D)/2} . cos {(C - D)/2} Calculation: cos[(180° – θ)/2].cos[(180° – 9θ)/2] + sin[(180° – 3θ)/2].sin[(180° – 13θ)/2] ⇒ cos(90 - θ/2) cos(90 - 9θ/2) + sin(90 - 3θ/2) sin(90 - 13θ/2) ⇒ sin θ/2.sin 9θ/2 + cos 3θ/2.cos 13θ/2 ⇒ 1/2 [cos(θ/2 - 9θ/2) - cos(θ/2 + 9θ/2)] + 1/2 [cos(3θ/2 + 13θ/2) + cos(3θ/2 - 13θ/2)] ⇒ 1/2 [cos (-8θ/2) - cos(10θ/2)] + 1/2 [cos(16θ/2) + cos(-10θ/2)] ⇒ 1/2 [cos (-4θ) - cos(5θ)] + 1/2 [cos(8θ) + cos(-5θ)] ⇒ 1/2 cos 4θ - 1/2 cos 5θ + 1/2 cos 8θ + 1/2 cos 5θ ⇒ 1/2 cos 4θ + 1/2 cos 8θ ⇒ 1/2 [cos 4θ + cos 8θ] ⇒ 1/2 × 2 [cos{(4θ + 8θ)/2}. cos{(4θ - 8θ)/2} ⇒ [cos (12θ/2) . cos (-4θ/2)] ⇒ cos 6θ . cos 2θ ∴ The correct answer is option (B).


Related Questions:

In the figure central angle of arc APB is 120°. And the central angle of arc MQN is 50° what is the measure of <C?

WhatsApp Image 2024-11-30 at 15.13.06.jpeg
A triangle is to be drawn with one side 6cm and an angle on it is 60 what should be the minimum length of the side opposite to this angle?

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

The least value of 8 cosec2θ + 25 sin2 θ is:

Conert Radian to Degree :

4π3\frac{4\pi}{3}