Challenger App

No.1 PSC Learning App

1M+ Downloads

What is the value of sin2 45° + cos2 45° ?

A-1

B2

C1

D0

Answer:

C. 1

Read Explanation:

Solution:

Given:

sin2 45° + cos2 45°

Formula:

sin2 A + cos2 A = 1

Calculation:

∴ sin2 45° + cos2 45° = 1

Alternate Method

sin45° = cos 45° = 1/√2

∴ sin2 45° + cos2 45° = (1/√2)2 + (1/√2)2 = 1/2 + 1/2 = 1


Related Questions:

The value of sin238° – cos252° is:

If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ +cot100θ is equal to:

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}

If Cos 3θ = Sin (θ - 34°), then the value of θ as an acute angle is:

In the figure <CAB=30°, <CPB=60°. AP 10 centimeters. Area of the rectangle ABCD is.............................. square centimeters.

WhatsApp Image 2024-11-30 at 10.23.08.jpeg