When both ends of column are pinned or hinged, buckling load equation is given byAπ2EIl2\frac{\pi^2EI}{l^2}l2π2EIBπ3EIl3\frac{\pi^3EI}{l^3}l3π3EICπ2EIl3\frac{\pi^2EI}{l^3}l3π2EIDπ2EIl4\frac{\pi^2EI}{l^4}l4π2EIAnswer: π2EIl2\frac{\pi^2EI}{l^2}l2π2EI Read Explanation: End conditionsLeL_eLeBuckling loadBoth ends HingedLe=LL_e=LLe=LPb=π2EIL2P_b=\frac{\pi^2EI}{L^2}Pb=L2π2EIBoth ends FixedLe=L2L_e=\frac L2Le=2LPb=4π2EIL2P_b=\frac{4\pi^2EI}{L^2}Pb=L24π2EIOne end fixed and other end is freeLe=2LL_e=2LLe=2LPb=π2EI4L2P_b=\frac{\pi^2EI}{4L^2}Pb=4L2π2EIOne end fixed and other end is hingedLe=L2L_e=\frac {L}{\sqrt2}Le=2LPb=2π2EIL2P_b=\frac{2\pi^2EI}{L^2}Pb=L22π2EI Read more in App