App Logo

No.1 PSC Learning App

1M+ Downloads
Which of the following numbers will have an even number of factors?

A1680

B52900

C30000

D36100

Answer:

C. 30000

Read Explanation:

Concept used:

We know when a number is a perfect square if it has an odd number of factors.

For example, 25 is a perfect square then it has an odd number of factors that is 1,5,25.

No of factors = 3 (odd value)

Calculation:

As we know,

1600, 52900 and 36100 are perfect square.

So, these have an odd number of factors.

30000 is not a perfect square so it has an even number of factors.

⇒ 1600 = 52 ×\times 26 

Total no of factors = (2 + 1) ×\times (6 + 1) = 21 (odd value)

⇒ 52900 = 232 ×\times 22 ×\times 52 )

Total no of factors = (2 + 1) ×\times (2 + 1) ×\times (2 + 1) = 27 (odd value)

⇒ 30000 = 54 ×\times 24 ×\times

Total no of factors = (4 + 1) ×\times (4 + 1) ×\times (1 + 1) = 50 (even value)

⇒ 36100 = 192 ×\times 22 ×\times 52 

Total no of factors = (2 + 1) ×\times (2 + 1) ×\times (2 + 1) = 27 (odd value)

∴ The correct answer is 30000.


Related Questions:

If the 8 digit number 136p5785 is divisible by 15, then find the least possible value of P.

461+462+4634^{61} +4^{62}+4^{63} is divisible by :

ഒരു സംഖ്യയെ 136 കൊണ്ട് ഹരിക്കുമ്പോൾ 36 ശിഷ്ടം വരുന്നു . ഇതേ സംഖ്യയെ 17 കൊണ്ട് ഹരിക്കുമ്പോൾ കിട്ടുന്ന ശിഷ്ടം എത്ര ?
4523a60b എന്ന 8 അക്ക സംഖ്യയേക്കാൾ (a + b) ഏറ്റവും വലിയ മൂല്യം 15 കൊണ്ട് വിഭജിക്കാവുന്നതാണെന്ന് കണ്ടെത്തുക.
Find the remainder, when 171 x 172 x 173 is divided by 17.