Challenger App

No.1 PSC Learning App

1M+ Downloads
Which of the following numbers will have an even number of factors?

A1680

B52900

C30000

D36100

Answer:

C. 30000

Read Explanation:

Concept used:

We know when a number is a perfect square if it has an odd number of factors.

For example, 25 is a perfect square then it has an odd number of factors that is 1,5,25.

No of factors = 3 (odd value)

Calculation:

As we know,

1600, 52900 and 36100 are perfect square.

So, these have an odd number of factors.

30000 is not a perfect square so it has an even number of factors.

⇒ 1600 = 52 ×\times 26 

Total no of factors = (2 + 1) ×\times (6 + 1) = 21 (odd value)

⇒ 52900 = 232 ×\times 22 ×\times 52 )

Total no of factors = (2 + 1) ×\times (2 + 1) ×\times (2 + 1) = 27 (odd value)

⇒ 30000 = 54 ×\times 24 ×\times

Total no of factors = (4 + 1) ×\times (4 + 1) ×\times (1 + 1) = 50 (even value)

⇒ 36100 = 192 ×\times 22 ×\times 52 

Total no of factors = (2 + 1) ×\times (2 + 1) ×\times (2 + 1) = 27 (odd value)

∴ The correct answer is 30000.


Related Questions:

താഴെ കൊടുത്തിരിക്കുന്നവയിൽ 9 കൊണ്ട് പൂർണമായി ഹരിക്കാൻ കഴിയാത്ത സംഖ്യ ഏത്?
11 കൊണ്ട് നിശ്ശേഷം ഹരിക്കാവുന്ന സംഖ്യ ഏതാണ്?
Summation of 4A3 and 984 is equal to 13B7 and if 13B7 is divisible by 11 then find 3A + 4B.
A natural number, when divided by 9, 10, 12 or 15, leaves a remainder of 3 in each case. What is the smallest of all such numbers?
Which of the following number is exactly divisible by 11?