Challenger App

No.1 PSC Learning App

1M+ Downloads
X and Y enter into a partnership with capital in the ratio 3 ∶ 5 After 5 months X adds 50% of his capital, while Y withdraws 60% of his capital. What is the share (in Rs. lakhs) of X in the annual profit of Rs. 6.84 lakhs?

A3.12

B3.6

C3.72

D4.2

Answer:

C. 3.72

Read Explanation:

Given: X and Y enter into partnership with capital in the ratio = 3 ∶ 5 After 5 months, X's capital = 150% of initial investment of X Y's capital = 40% of initial investment of Y Annual profit = Rs. 6.84 lakhs Formula used: (X's profit) ∶ (Y's profit) = (X's capital × Time period of investment) ∶ (Y's capital × Time period of investment) Calculations: Let X's and Y's initial investment for the first 5 months be 30 and 50 After 5 months, X's capital for next 7 months = (150/100) × 30 = 45 Y's capital for next 7 months = (40/100) × 50 = 20 (X's profit)/(Y's profit) = [(30 × 5) + (45 × 7)]/[(50 × 5) + (20 × 7)] ⇒ (150 + 315)/(250 + 140) ⇒ 465/390 ⇒ 31/26 Total profit = 31 + 26 = 57 units ⇒ (X's profit)/(Total profit) = 31/57 ⇒ (X's profit)/6.84 = 31/57 ⇒ X's profit = (31/57) × 6.84 ⇒ X's profit = 3.72 ∴ The profit earned by X is Rs. 3.72 lakhs


Related Questions:

രണ്ടാമത്തെ സംഖ്യ ആദ്യ സംഖ്യയുമായി ബന്ധപ്പെട്ടിരിക്കുന്ന പോലെ മൂന്ന്നാമത്തെ സംഖ്യയുടെ ബന്ധപ്പെട്ട ഓപ്ഷൻ തിരഞ്ഞെടുക്കുക 31 : 90 : : 43 : ?
Three partners A, B, and C divide Rs. 2,21,000 amongst themselves in such a way that if Rs. 2,000, Rs. 3,000, and Rs. 4,000 are removed from the sums that A, B, and C received, respectively, then the share of the sums that they will get are in the ratio 11:18:24. How much (in Rs.) did B receive?
Three partners invested in a business in the ratio 1:9:8. They invested their capitals for 11 months, 6 months and 2 months, respectively. What was the ratio of their profits?
If A : B = 7 : 9, and B : C = 5 : 7 , then A : C =
ഒരു വിദ്യാലയത്തിലെ ആൺകുട്ടികളുടെയും പെൺകുട്ടികളുടെയും എണ്ണങ്ങൾ തമ്മിലുള്ള അംശബന്ധം 3 : 4 ആണ്. ആകെ 1722 കുട്ടികൾ ഉണ്ടെങ്കിൽ ആൺകുട്ടികളുടെ എണ്ണം എത്ര?