x=acosθ,y=asinθ;dydx=x=acosθ , y=asinθ ; \frac{dy}{dx}=x=acosθ,y=asinθ;dxdy= AcotθB-cotθCtanθD-tanθAnswer: B. -cotθ Read Explanation: x=acosθ;y=asinθx= acosθ ; y= asinθx=acosθ;y=asinθdydx=dy/dθdx/dθ=acosθ−asinθ=−cotθ\frac{dy}{dx}=\frac{dy/dθ}{dx/dθ}= \frac{acosθ}{-asinθ}= -cotθdxdy=dx/dθdy/dθ=−asinθacosθ=−cotθ Read more in App