App Logo

No.1 PSC Learning App

1M+ Downloads
z= x⁴sin(xy³) ആയാൽ ∂z/∂y കണ്ടുപിടിക്കുക.

A3x⁴y² cos(xy³)

B3x⁵y² sin(xy³)

C3x⁵y cos(xy³)

D3x⁵y² cos(xy³)

Answer:

D. 3x⁵y² cos(xy³)

Read Explanation:

z= x⁴sin(xy³) ∂z/∂y = x⁴.cos(xy³).x.3y² = 3x⁵y² cos(xy³)


Related Questions:

If A is a symmetric matrix, then adj A is
f(x)= |x - 1| + sin x continuous ആയിട്ടുള്ള എല്ലാ പോയിന്റുകളും കണ്ടുപിടിക്കുക
f(x)=-x²+6x+3 എന്ന ഏകദം ആരോഹണത്തിലാകുന്നത്?
i. [a, b] യിൽ f continuous ആണ്. ii . (a , b ) യിൽ f differentiable ആണ്. iii . f(a) - f(b) = (ബി - a)f'(c ) എന്ന സമവാക്യം സമവാക്യം സാധൂകരിക്കുന്ന c എന്ന പോയിന്റ് (a, b) യിൽ ഉണ്ട് . iv. f(a) = f(b) = 0 v. f'(a)=0 എന്ന സമവാക്യം സാധൂകരിക്കുന്ന c എന്ന പോയിന്റ് (a, b) യിൽ ഉണ്ട്. അഞ്ചു വ്യവസ്ഥകളിൽ Rolle's theorem ത്തിനോട് ബന്ധപ്പെട്ട വ്യവസ്ഥകൾ ഏതൊക്കെ
f(x)=x³-6x²+9x+8 എന്ന ഏകദം കർശന അവരോഹണം ആകുന്ന ഇടവേള ഏത്?