App Logo

No.1 PSC Learning App

1M+ Downloads
A natural number, when divided by 9, 10, 12 or 15, leaves a remainder of 3 in each case. What is the smallest of all such numbers?

A183

B153

C63

D123

Answer:

A. 183

Read Explanation:

Given:

The number on being divided by 9, 10, 12, and 15 gives a remainder of 3 in each case.

Concept:

Take LCM of all the divisions and add the remainder so obtained (same in each case) to it.

LCM = Least Common Multiple (Least value which is exactly divisible by all the given numbers)

Calculation:

9=3×3⇒9=3\times3

10=2×5⇒10=2\times{5}

12=2×2×3⇒12=2\times{2}\times{3}

15=3×5⇒15=3\times{5}

LCM of (9, 10, 12 and 15) =2×2×3×3×5=180=2\times{2}\times{3}\times{3}\times{5}=180

∴ Required number = 180 + 3 = 183.

Shortcut Trick

Required number = LCM of (9, 10, 12 and 15) + 3 = 180 + 3 = 183.


Related Questions:

ഒരു ഡിവിഷൻ തുകയിൽ, ഡിവിസർ ക്വോട്ടിയന്റിന്റെ 6 മടങ്ങും ബാക്കി 4 മടങ്ങും ആണ്. ബാക്കി 3 ആണെങ്കിൽ ലാഭവിഹിതം
നമ്പർ x4441 11-ൽ വിഭജ്യമായാൽ, x-യുടെ മുഖമാനമാണ് എത്ര?
72-ലേക്ക് ഭാഗിക്കപ്പെട്ട 9-അക്കികളുടെ സംഖ്യ 83x93678y ആണെങ്കിൽ, (3x - 2y) യുടെ மதനം എങ്ങനെ ആയിരിക്കും?
Which of the following numbers is divisible by 24 ?

Find the number of zeroes at the end of the product of the expression (152×126×504×42)(15^2\times{12^6}\times{50^4}\times{4^2}) ?