App Logo

No.1 PSC Learning App

1M+ Downloads
A natural number, when divided by 9, 10, 12 or 15, leaves a remainder of 3 in each case. What is the smallest of all such numbers?

A183

B153

C63

D123

Answer:

A. 183

Read Explanation:

Given:

The number on being divided by 9, 10, 12, and 15 gives a remainder of 3 in each case.

Concept:

Take LCM of all the divisions and add the remainder so obtained (same in each case) to it.

LCM = Least Common Multiple (Least value which is exactly divisible by all the given numbers)

Calculation:

9=3×3⇒9=3\times3

10=2×5⇒10=2\times{5}

12=2×2×3⇒12=2\times{2}\times{3}

15=3×5⇒15=3\times{5}

LCM of (9, 10, 12 and 15) =2×2×3×3×5=180=2\times{2}\times{3}\times{3}\times{5}=180

∴ Required number = 180 + 3 = 183.

Shortcut Trick

Required number = LCM of (9, 10, 12 and 15) + 3 = 180 + 3 = 183.


Related Questions:

What is the smallest 5-digit number exactly divisible by 999?
On dividing a number by 56 we get 29 as remainder. On dividing the same number by 8, what will be the remainder?
What is the smallest number which when divided by 36, 45 and 54, gives a remainder of 3 each time?
481A673 എന്ന സംഖ്യയെ 9 കൊണ്ട് പൂർണ്ണമായും വിഭജിക്കാൻ കഴിയുമെങ്കിൽ, A-യുടെ സ്ഥാനത്ത് ഏറ്റവും ചെറിയ പൂർണ്ണ സംഖ്യ ഏതാണ്?

6 കൊണ്ട് ഹരിക്കാവുന്ന സംഖ്യകൾ ഇതാണ്

 
i. 5994
ii. 8668
iii. 5986
iv. 8982