Equation of a line passing through (2,3) which is perpendicular to the line 5x+2y-8=0 is :A2x- 5y=11B2x+5y=11C2x-5y=-11D5x-2y=-11Answer: C. 2x-5y=-11 Read Explanation: slope of a line ax+by+c=0 is -a/bslope of the line 5x+2y-8=0 is -5/2If the lines are perpendicular , thenm1×m2=−1m_1\times m_2=-1m1×m2=−1−52×m2=−1\frac{-5}{2}\times m_2=-12−5×m2=−1m2=−1÷−52m_2=-1 \div \frac{-5}{2}m2=−1÷2−5m2=1×25m_2=1\times \frac{2}{5} m2=1×52m2=25m_2=\frac{2}{5}m2=52slope=25point(2,3)slope=\frac{2}{5}point (2,3)slope=52point(2,3)y−y1=m(x−x1)y-y_1=m(x-x_1)y−y1=m(x−x1)y−3=25(x−2)y-3=\frac{2}{5}(x-2)y−3=52(x−2)5(y−3)=2(x−2)5(y-3)=2(x-2)5(y−3)=2(x−2)5y−15=2x−45y-15=2x-45y−15=2x−42x−5y=−112x-5y=-112x−5y=−11 Read more in App