Challenger App

No.1 PSC Learning App

1M+ Downloads

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

A36

B24

C42

D48

Answer:

A. 36

Read Explanation:

Solution:

Given : 

(a + b + c) = 12, (a2 + b2 + c2) = 50

Formula Used : 

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)

(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)

Calculation : 

⇒ 144 = 50 + 2(ab + bc +ac)

⇒ (ab + bc +ac) = 942=47\frac{94}{2} = 47

Now,

⇒ (a3 + b3 + c3 - 3abc)

⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)

⇒ 3×12=363\times{12} = 36

∴ The correct answer is 36.


Related Questions:

3 പെൻസിലിനും 4 പേനയ്ക്കും കൂടി 66 രൂപയാണ്‌ വില. 6 പെൻസിലിനും 3 പേനയ്ക്കുമാണെങ്കിൽ 72 രൂപയും എങ്കിൽ ഒരു പേനയുടെ വില എത്രയാണ് ?
Two positive numbers differ by 1280. When the greater number is divided by the smaller number, the quotient is 7 and the remainder is 50. The greater number is:
If the reciprocal of 1-x is 1+x, then what number is x ?

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?