Challenger App

No.1 PSC Learning App

1M+ Downloads

f(x,y)=xy2+3x+2y3+logxf(x,y) = xy^2+3x+2y^3+logx എങ്കിൽ fx=?f_x= ?

Ay2+1x+3y^2+ \frac{1}{x} + 3

B1x+3\frac{1}{x} + 3

C1x3\frac{1}{x} -3

Dy21x3y^2-\frac{1}{x} -3

Answer:

y2+1x+3y^2+ \frac{1}{x} + 3

Read Explanation:

f(x,y)=xy2+3x+2y3+logxf(x,y) = xy^2+3x+2y^3+logx

fx=y2+3+0+1x=y2+1x+3f_{x} = y^2 + 3 + 0 + \frac{1}{x} = y^2 + \frac{1}{x} + 3


Related Questions:

ഒരു സമചതുര മാട്രിക്സ് A ഹെർമിഷ്യൻ ആകണമെങ്കിൽ
y=x²+3x+2 ; d²y/dx²=
x² -8x +17 എന്ന ഏകദത്തിന്ടെ ഏറ്റവും കുറഞ്ഞ വില?

limxln(x)2(x1/2)=\lim_{x \to ∞}\frac {ln(x)}{2(x^{1/2})}=

y=x³logx ; d²y/dx²=