Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b + c = 6, a3 + b3 + c3 - 3 abc = 342, and a2 + b2 + c2 = 50, then what is the value of ab + bc + ca?

A5

B-5

C-7

D8

Answer:

C. -7

Read Explanation:

Solution:

Given :-

If a + b + c = 6, a3 + b3 + c3 - 3abc = 342, and a2 + b2 + c2 = 50

Concept :- 

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

Calculation :-

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

⇒ 342 = 6 ×\times (50 - ab - bc - ca)

(3426)(\frac{342}{6}) = 50 - (ab + bc + ca)

⇒ 57 = 50 - (ab + bc + ca)

⇒ (ab + bc + ca) = 50 - 57 

⇒ (ab + bc + ca) = -7

∴ (ab + bc + ca) is -7


Related Questions:

a =7, b = 5, c = 3 ; a ²+ b ² + c ² - ac - bc - ab=?
Project method is best suitable for:
If the sum and product of two numbers are respectively 40 and 375, then their difference is

The fraction to be added toy210y/11+11/121y^2-10y/11 +11/121make it a perfect square is:

A statement is given, followed by four conclusions given in the options. Find out which conclusion is true based on the given statement. Statement: H=W>F≥S≥T>Y