Challenger App

No.1 PSC Learning App

1M+ Downloads

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

A8

B7

C5

D9

Answer:

C. 5

Read Explanation:

Solution:

Given :

a3+b3+c33abc=126a^3+b^3+c^3-3abc=126 and  a + b + c = 6

Formula used :

a3+b3+c33abc=(a+b+c)[(a+b+c)23(ab+bc+ca)]a^3+b^3+c^3-3abc=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]

Calculations :

126 = 6 [(6)2 - 3(ab + bc + ca)] 

21 = 36 - 3(ab + bc + ca)

3(ab + bc + ca) = 15 

⇒ ab + bc + ca = 5 

∴ The value of ab + bc + ca is equal to 5


Related Questions:

(x-y)=5 , x² -y² =55 ആയാൽ y യുടെ വില എന്ത്?

If x2+1/x2=34x ^ 2 + 1 / x ^ 2 = 34 find the value of x+1/xx + 1 / x

Which among the following quadratic equation has no real solution?

(2x)(2y)=8,(9x)(3y)=81(2^x)(2^y)=8 , (9^x)(3^y)=81So what is the value of x and y?

Find two consecutive odd positive integers, sum of whose squares is 290?