Challenger App

No.1 PSC Learning App

1M+ Downloads

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

A8

B7

C5

D9

Answer:

C. 5

Read Explanation:

Solution:

Given :

a3+b3+c33abc=126a^3+b^3+c^3-3abc=126 and  a + b + c = 6

Formula used :

a3+b3+c33abc=(a+b+c)[(a+b+c)23(ab+bc+ca)]a^3+b^3+c^3-3abc=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]

Calculations :

126 = 6 [(6)2 - 3(ab + bc + ca)] 

21 = 36 - 3(ab + bc + ca)

3(ab + bc + ca) = 15 

⇒ ab + bc + ca = 5 

∴ The value of ab + bc + ca is equal to 5


Related Questions:

If x+1x=2x + \frac{1}{x}=2, then x5+1x5x^5+\frac{1}{x^5} is

ഒരു സംഖ്യയുടേയും അതിന്റെ വ്യുൽക്രമത്തിന്റേയും തുക 6 ആയാൽ സംഖ്യ ഏത്?

If p and q are the solutions of the equation aX2 + bx+c=0, where a, b and c are positive numbers, then

What do we get on simplifying the expression xx+1+x+1x1x(x+1)\frac{x}{x+1}+\frac{x+1}{x}-\frac{1}{x(x+1)} ?

Find the middle term in the expansion of [x3+9y]10[\frac{x}{3}+9y]^{10}