Challenger App

No.1 PSC Learning App

1M+ Downloads

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

A21

B373\sqrt{7}

C18

D777\sqrt{7}

Answer:

C. 18

Read Explanation:

Solution:

Formula used:

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a+ b3 + 3ab(a + b)

Calculation:

Given that, a2+1a2=7a^2+\frac{1}{a^2}=7

a2+1a2+2=9⇒a^2+\frac{1}{a^2}+2=9

By using the above formula,

(a2+1a2)2=9⇒(a^2+\frac{1}{a^2})^2=9

(a+1a)=3⇒(a+\frac{1}{a})=3 ----------(1)

We know  that, (a + b)3 = a3 + b3 + 3ab(a + b)

a3+1a3+3(a×1a)(a+1a)=27⇒a^3+\frac{1}{a^3}+3(a\times{\frac{1}{a}})(a+\frac{1}{a}) =27

Using equation (1)

a3+1a3+3×3=27⇒a^3+\frac{1}{a^3}+3\times{3}=27

a3+1a3=279=18⇒a^3+\frac{1}{a^3}=27-9=18


Related Questions:

A statement is given, followed by four conclusions given in the options. Find out which conclusion is true based on the given statement. Statement: H=W>F≥S≥T>Y
image.png
ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഗണിത പഠനത്തിന് ഏറ്റവും അനുയോജ്യമായ സോഫ്റ്റവെയർ ഏത് ?

Find the root of the equation 3x226x+2=03x^2-2\sqrt6x+2=0.

(6.42-3.62) / 2.8 എത്ര ?