Challenger App

No.1 PSC Learning App

1M+ Downloads
The perpendicular bisector of the line segment joining the points A(1,1) and B(3,5) cuts the x-axis at :

A(-4, 0)

B(8, 0)

C(4, 0)

D(5, 0)

Answer:

B. (8, 0)

Read Explanation:

Midpoint is

(x1+x22,y1+y22)(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})

=(1+32,1+52)=(2,3)=(\frac{1+3}{2},\frac{1+5}{2})=(2,3)

m1=y2y1x2x1=5131=42=2m_1=\frac{y_2-y_1}{x_2-x_1}=\frac{5-1}{3-1}=\frac{4}{2}=2

m1×m2=1m_1 \times m_2=-1

m2=12m_2=\frac{-1}{2}

Equation of the perpendicular line is

yy1=m(xx1)y-y_1=m(x-x_1)

m2=12,(x1,y1)=(2,3)m_2=\frac{-1}{2}, (x_1,y_1)=(2,3)

y3=12(x2)y-3=\frac{-1}{2}(x-2)

2y6=x+22y-6=-x+2

2y6+x2=02y-6+x-2=0

x+2y8=0x+2y-8=0

= (8,0)


Related Questions:

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

Find the radius of the circle x²+y²-4x-8y-45=0

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

The distance between two points (-6,y) and (18,6) is 26 units.Find the value of y