The perpendicular bisector of the line segment joining the points A(1,1) and B(3,5) cuts the x-axis at :A(-4, 0)B(8, 0)C(4, 0)D(5, 0)Answer: B. (8, 0) Read Explanation: Midpoint is(x1+x22,y1+y22)(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})(2x1+x2,2y1+y2)=(1+32,1+52)=(2,3)=(\frac{1+3}{2},\frac{1+5}{2})=(2,3)=(21+3,21+5)=(2,3)m1=y2−y1x2−x1=5−13−1=42=2m_1=\frac{y_2-y_1}{x_2-x_1}=\frac{5-1}{3-1}=\frac{4}{2}=2m1=x2−x1y2−y1=3−15−1=24=2m1×m2=−1m_1 \times m_2=-1m1×m2=−1m2=−12m_2=\frac{-1}{2}m2=2−1Equation of the perpendicular line is y−y1=m(x−x1)y-y_1=m(x-x_1)y−y1=m(x−x1)m2=−12,(x1,y1)=(2,3)m_2=\frac{-1}{2}, (x_1,y_1)=(2,3)m2=2−1,(x1,y1)=(2,3)y−3=−12(x−2)y-3=\frac{-1}{2}(x-2)y−3=2−1(x−2)2y−6=−x+22y-6=-x+22y−6=−x+22y−6+x−2=02y-6+x-2=02y−6+x−2=0x+2y−8=0x+2y-8=0x+2y−8=0= (8,0) Read more in App