Challenger App

No.1 PSC Learning App

1M+ Downloads

If a2+b2+c2=14a^2 + b^2 + c^2 = 14 andab+bc+ca=11 ab + bc + ca = 11, find (a+b+c)3=(a + b + c)^3=.

A216, -216

B36,-36

C6,- 6

D12, -12

Answer:

A. 216, -216

Read Explanation:

(a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

a2+b2+c2=14 a^2 + b^2 + c^2 = 14
ab+bc+ca=11 ab + bc + ca = 11

Now,

(a+b+c)2=14+211=36(a + b + c)^2 = 14 + 2 \sqrt{ 11}= 36

a + b + c = +6 , -6

(a+b+c)3=216,216(a + b + c)^3 = 216 , -216


Related Questions:

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

Examine the nature of the roots of the following quadratic equation:

3x2+8x+4=03x^2+8x+4=0

(203 + 107)² - (203 - 107)² = ?

If points (a,0),(0,b)and(1,1) are collinear, then (a1+b1)(a^{-1} + b^{-1}) will be equal to :

2x - 3y is a factor of: