Challenger App

No.1 PSC Learning App

1M+ Downloads
If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:

A35°

B45°

C22.5°

D27.5°

Answer:

C. 22.5°

Read Explanation:

Solution: Given: sec3x = cosec(3x - 45°) Concept used: cosec(90 - θ) = secθ Calculation: sec3x = cosec(3x - 45°) ⇒ cosec(90° - 3x) = cosec(3x - 45°) ⇒ 90 - 3x = 3x - 45° ⇒ 6x = 135° ⇒ x = 22.5° ∴ The value of x is 22.5°.


Related Questions:

Which among the following statement is true in the figure?

WhatsApp Image 2024-12-02 at 17.51.32.jpeg
If tan A = 3, then what is the value of 3 sin A cos A?

The value of tan(–405°) is :

A. 1

B. –1

C. ∞

D. 0

Find the area of the parallelogram with sides AB = 8, AC = 4, ∠ BAC = 30

1000114769.jpg
If cos 9a = sin ɑ and 9ɑ < 90° , then the value of tan 5ɑ is