Challenger App

No.1 PSC Learning App

1M+ Downloads
If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:

A35°

B45°

C22.5°

D27.5°

Answer:

C. 22.5°

Read Explanation:

Solution: Given: sec3x = cosec(3x - 45°) Concept used: cosec(90 - θ) = secθ Calculation: sec3x = cosec(3x - 45°) ⇒ cosec(90° - 3x) = cosec(3x - 45°) ⇒ 90 - 3x = 3x - 45° ⇒ 6x = 135° ⇒ x = 22.5° ∴ The value of x is 22.5°.


Related Questions:

Find the value of sin235° + sin255°

What is the value of cot 35° cot 40° cot 45° cot 50° cot 55°?
cosA=0.8, then what is tanA ?

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

AB = 6, AC = 4, ∠ BAC = 600 എന്നീ വശങ്ങളുള്ള സമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക.

1000114769.jpg