If the radius of a cylinder is increased by 10% and height remains unchanged, then what is the percentage of increase in volume ?A10%B20%C11%D21%Answer: D. 21% Read Explanation: v=πr2hv=\pi r^2hv=πr2hr1=originalradius=1r_1=original radius = 1r1=originalradius=1r2=increasedradius=1.1×r1r_2=increased radius=1.1 \times r_1r2=increasedradius=1.1×r1v1=πr12hv_1=\pi r_1^2hv1=πr12hv2=π(1.1×r1)2hv_2=\pi (1.1 \times r_1)^2hv2=π(1.1×r1)2h% increase =v2−v1v1×100\frac{v_2-v_1}{v_1}\times 100v1v2−v1×100=(π(1.1×r1)2h)−(πr12h)πr12h×100=\frac{(\pi(1.1\times r_1)^2h)-(\pi r_1^2h)}{\pi r_1^2h}\times 100=πr12h(π(1.1×r1)2h)−(πr12h)×100=πr12h(1.12−1)πr12h×100=\frac{\pi r_1^2h(1.1^2-1)}{\pi r_1^2h}\times 100=πr12hπr12h(1.12−1)×100=1.21−1×100=1.21-1 \times 100=1.21−1×100=21=21%=21 Read more in App