Challenger App

No.1 PSC Learning App

1M+ Downloads

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^cആയാൽ abc=?$$

A1

B1/2

C1/xyz

D2

Answer:

A. 1

Read Explanation:

x=ya,y=zb,z=xcx=y^a,y=z^b,z=x^c

x=ya=(zb)ay=zbx=y^a=(z^b)^a\because{y=z^b}

=((xc)b)az=xc=((x^c)^b)^a\because{z=x^c}

=xabc(mn)p=mop=x^{abc}\because{(m^n)^p=m^{op}}

    abc=1x=xabc\implies{abc}=1\because{x=x^{abc}}


Related Questions:

21001+2999210002998=?\frac{2^{1001}+2^{999}}{2^{1000}-2^{998}}=?

image.png

10240.2=?1024^{0.2}=?

(23)3×(35)2=({\frac{-2}{3}})^3 \times ({\frac{3}{5}})^2 =

Given that 870.27=x87^{0.27} = x, 870.15=y87^{0.15}= y and xz=y6x^z = y^6 , then the value of z is close to: