Challenger App

No.1 PSC Learning App

1M+ Downloads
In a triangle ABC , sidde c=2,

A30°

B15°

C45°

DNone of these

Answer:

A. 30°

Read Explanation:

In a triangle ABC,

c=2, A=45°, a=2√2

Using sine rule in given triangle,

asinA=csinC\frac{a}{sinA}=\frac{c}{sinC}

22sin45=2sinC\frac{2\sqrt2}{sin45}=\frac{2}{sinC}

sinC=sin452=122sinC=\frac{sin45}{\sqrt2}=\frac{1}{\sqrt2\sqrt2}

sinC=12sinC=\frac{1}{2}

C=30°C=30°


Related Questions:

Which among the following statement is true in the figure?

WhatsApp Image 2024-12-02 at 17.51.32.jpeg

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}

If the arcs of the same lengths in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii
If cos 9a = sin ɑ and 9ɑ < 90° , then the value of tan 5ɑ is

Given that 4tanA = 3 , then the value of4sinAcosA4sinA+cosA\frac{4sinA-cosA}{4sinA+cosA} is