∫c−ydx+xdy\int_c -ydx + xdy∫c−ydx+xdyC=y2=3xC=y^2 =3x C=y2=3x from (3,3) to(0,0) A9B3C6D2Answer: B. 3 Read Explanation: y2=3x→x=y23y^2 = 3x \to x = \frac{y^2}{3}y2=3x→x=3y2dx=2y3dydx=\frac{2y}{3}dydx=32ydy∫y=30−y23ydy+y23dy=∫y=30−23y2dy+y23dy\int_{y=3}^0-y \frac{2}{3}ydy + \frac{y^2}{3}dy = \int_{y=3}^0\frac{-2}{3}y^2dy+\frac{y^2}{3}dy∫y=30−y32ydy+3y2dy=∫y=303−2y2dy+3y2dy=∫03−13y2dy=\int_0^3\frac{-1}{3}y^2dy=∫033−1y2dy=13∫03y2dy=\frac{1}{3}\int_0^3y^2dy=31∫03y2dy=13[y33]03=\frac{1}{3}[\frac{y^3}{3}]_0^3=31[3y3]03=3=3=3 Read more in App