Challenger App

No.1 PSC Learning App

1M+ Downloads

(1sinxcos2x)dx=\int(\frac{1- sinx}{cos^2x})dx =

A=tanx+secx+C=tanx + secx +C

B=tanxcosecx+C=tanx - cosecx +C

C=tanxsecx+C=tanx - secx +C

D=cotxsecx+C=cotx - secx +C

Answer:

=tanxsecx+C=tanx - secx +C

Read Explanation:

(1sinxcos2x)dx=(1cos2x)dx(sinxcos2x)dx\int(\frac{1- sinx}{cos^2x})dx = \int (\frac{1}{cos^2x})dx - \int(\frac{sinx}{cos^2x})dx

=(sec2x)dxsinxcosx×1cosxdx=(sec2x)dx(secxtanx)=\int (sec^2x)dx - \int \frac{sinx}{cosx} \times\frac{1}{cosx}dx = \int (sec^2x)dx - \int (secxtanx)

=tanxsecx+C=tanx - secx +C


Related Questions:

x സൂചക സംഖ്യ 2 ആയ ബിന്ദുവിൽ y=x³-x+1 എന്ന വക്രത്തിന്ടെ തൊടുവരയുടെ ചരിവ്?

limx2[x32x2x25x+6]=\lim_{x \to 2} [\frac{x^3 - 2x^2}{x^2-5x+6}]=

If A is an orthogonal matrix, then the |A| is
The equation of a line with slope 2/3 and passing through (3, - 2) is :

limx0eaxebxx=\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{x}=