അവകലജ സമവാക്യംdydx=−4xy2 \frac{dy}{dx}=-4xy^2dxdy=−4xy2 ന്ടെ x=0, y=1 ആകുന്ന പ്രത്യേക പരിഹാരം ഏത്? Ay=2x²+1By=12x2+1y=\frac{1}{2x^2+1}y=2x2+11C2x²+y=0D1+2x=yAnswer: y=12x2+1y=\frac{1}{2x^2+1}y=2x2+11 Read Explanation: ∫dyy2=−∫4xdx\int \frac{dy}{y^2}=-\int4xdx∫y2dy=−∫4xdx−1y=−4x22+C\frac{-1}{y}=-4\frac{x^2}{2}+Cy−1=−42x2+C2x2−1y=C2x^2-\frac{1}{y}=C2x2−y1=Cx=0 ; y=0=> 0-1/1 =CC=12x2−1y=−12x^2-\frac{1}{y}=-12x2−y1=−12x2+1=1y2x^2+1=\frac{1}{y}2x2+1=y1y=12x2+1y=\frac{1}{2x^2+1}y=2x2+11 Read more in App