App Logo

No.1 PSC Learning App

1M+ Downloads

Find the area of the parallelogram with sides AB = 8, AC = 4, ∠ BAC = 30

1000114769.jpg

A12

B16

C20

D24

Answer:

B. 16

Read Explanation:

Area = ab × sinx

= 8 × 4 × sin 30

= 8 × 4 × 1/2

= 16


Related Questions:

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}

image.png
circumradius of an equilateral triangle of sides 6 cm

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

If 3 sec2 x - 4 = 0, then the value of x (0 < x < 90°)