App Logo

No.1 PSC Learning App

1M+ Downloads

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

A13

B16

C18

D11

Answer:

B. 16

Read Explanation:

Solution:

Given :

 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy)

Formula used :

P3 - q3 = (p - q) (p2 + q2 + pq)

Calculations :

27(x + y)3 - 8(x - y)3 = [3(x + y)]3 - [2(x - y)]3

we use given formula above

⇒ [3(x + y) - 2(x - y)]  [(3x + 3y)2 + (2x - 2y)2 + 3(x + y) × 2(x - y)]

⇒ (x + 5y) (19x2 + 7y2 + 10xy)

Now compare (x + 5y) (19x2 + 7y2 + 10xy) with (x + 5y)(Ax2 + By2 + Cxy)

We will get A = 19, B = 7 and C = 10 

So, 

A + B - C = 19 + 7 - 10 

⇒ 16 

∴ The value of A + B - C is 16


Related Questions:

In the expansion of (2x+y)3(2xy)3(2x + y )^3-(2x - y)^3, the coefficient of x2yx^2y is:

x and y are two positive integers x-y and x+y are two prime numbers. Then y is:

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is