App Logo

No.1 PSC Learning App

1M+ Downloads

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

A13

B16

C18

D11

Answer:

B. 16

Read Explanation:

Solution:

Given :

 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy)

Formula used :

P3 - q3 = (p - q) (p2 + q2 + pq)

Calculations :

27(x + y)3 - 8(x - y)3 = [3(x + y)]3 - [2(x - y)]3

we use given formula above

⇒ [3(x + y) - 2(x - y)]  [(3x + 3y)2 + (2x - 2y)2 + 3(x + y) × 2(x - y)]

⇒ (x + 5y) (19x2 + 7y2 + 10xy)

Now compare (x + 5y) (19x2 + 7y2 + 10xy) with (x + 5y)(Ax2 + By2 + Cxy)

We will get A = 19, B = 7 and C = 10 

So, 

A + B - C = 19 + 7 - 10 

⇒ 16 

∴ The value of A + B - C is 16


Related Questions:

9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

Solve the inequality : -3x < 15

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

If the reciprocal of 1-x is 1+x, then what number is x ?