App Logo

No.1 PSC Learning App

1M+ Downloads

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

A±10

B±4

C±8

D±6

Answer:

C. ±8

Read Explanation:

Solution:

Given:

x2 + y2 = 32 and xy = 16

Formula:

(x + y)2 = x2 + y2 + 2xy

Calculation:

(x + y)2 = x2 + y2 + 2xy

⇒ (x + y)2 = 32 + 2 ×\times 16 

⇒ (x + y)2 = 32 + 32

⇒ (x + y)2 = 64

⇒ (x + y) = ±8


Related Questions:

a+b = 8, ab= 12 ആയാൽ (a - b) എത്ര?
The sum of two numbers is 59 and their product is 840. Find the sum of their squares.

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.

x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is: