App Logo

No.1 PSC Learning App

1M+ Downloads

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

A±10

B±4

C±8

D±6

Answer:

C. ±8

Read Explanation:

Solution:

Given:

x2 + y2 = 32 and xy = 16

Formula:

(x + y)2 = x2 + y2 + 2xy

Calculation:

(x + y)2 = x2 + y2 + 2xy

⇒ (x + y)2 = 32 + 2 ×\times 16 

⇒ (x + y)2 = 32 + 32

⇒ (x + y)2 = 64

⇒ (x + y) = ±8


Related Questions:

The difference between a number and one-third of that number is 228. What is 20% of that number?
X @Y = X÷ Y + X ആയാൽ, 6@3 - 2@1 എത്ര?

If a- =1/a=3, then what is a3-1/a3 ?

If (a+1/a3)2=16(a+1/a-3)^2=16 then find a3+1/a3a^3+1/a^3

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?