App Logo

No.1 PSC Learning App

1M+ Downloads

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,

Aa = b

Bb = 2a

Ca = 2b

Da = -b

Answer:

A. a = b

Read Explanation:

Given:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

Formula used:

(a+b)2=(a2+b2+2ab)(a+b)^2=(a^2+b^2+2ab)

Calculation:

According to the question:

2(a2+b2)=(a+b)22(a^2+b^2)=(a+b)^2

⇒ 2(a2+b2)=(a2+b2+2ab)2(a^2+b^2)=(a^2+b^2+2ab)

2a2+2b2=a2+b2+2ab2a^2+2b^2=a^2+b^2+2ab

2a2+2b2a2b22ab=02a^2+2b^2-a^2-b^2-2ab=0

a2+b22ab=0a^2+b^2-2ab=0

(ab)2=0(a-b)^2=0

⇒ a – b = 0

⇒ a = b

∴ The answer is a = b.


Related Questions:

If 27(x + y)3 - 8(x - y)3 = (x + 5y)(Ax2 + By2 + Cxy), then what is the value of (A + B - C)?

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots

Examine the nature of the roots of the following quadratic equation:

3x2+8x+4=03x^2+8x+4=0

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

If x2+1x2=38x^2+\frac{1}{x^2}=38 , then what is the value of x1x\left| {x - \frac{1}{x}} \right|