If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is: A152B224C96D344Answer: A. 152 Read Explanation: Solution:Given:a + b = 8 and a + a2b + b + ab2 = 128Formula:a3 + b3 = (a + b) [(a + b)2 - 3ab]Calculation:a + a2b + b + ab2 = 128⇒ a + b + a2b + ab2 = 128⇒ 8 + a2b + ab2 = 128⇒ a2 b + ab2 = 128 - 8⇒ a2 b + ab2 = 120⇒ ab (a + b) = 120⇒ ab ×\times× 8 = 120⇒ ab = 1208\frac{120}{8}8120⇒ ab = 15a3 + b3 = (a + b) [(a + b)2 - 3ab]⇒ a3 + b3 = 8 [82 - 3 ×\times× 15]⇒ a3 + b3 = 8 [64 - 45]⇒ a3 + b3 = 8 ×\times× 19∴ a3 + b3 = 152 Read more in App