App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

A152

B224

C96

D344

Answer:

A. 152

Read Explanation:

Solution:

Given:

a + b = 8 and a + a2b + b + ab2 = 128

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

a + a2b + b + ab2 = 128

⇒ a + b + a2b + ab2 = 128

⇒ 8 + a2b + ab2 = 128

⇒ a2 b + ab2 = 128 - 8

⇒ a2 b + ab2 = 120

⇒ ab (a + b) = 120

⇒ ab ×\times 8 = 120

⇒ ab = 1208\frac{120}{8}

⇒ ab = 15

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 8 [82 - 3 ×\times 15]

⇒ a3 + b3 = 8 [64 - 45]

⇒ a3 + b3 = 8 ×\times 19

∴ a3 + b3 = 152 


Related Questions:

a+b =12, ab= 22 ആയാൽ a² + b² എത്രയാണ്?

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

If x + y = 15 and xy = 14, then the value of x – y is :

If x - 2y = 3 and xy = 5, find the value of x24y2x^2-4y^2

If x2+1x2=38x^2+\frac{1}{x^2}=38 , then what is the value of x1x\left| {x - \frac{1}{x}} \right|