App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is:

A152

B224

C96

D344

Answer:

A. 152

Read Explanation:

Solution:

Given:

a + b = 8 and a + a2b + b + ab2 = 128

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

a + a2b + b + ab2 = 128

⇒ a + b + a2b + ab2 = 128

⇒ 8 + a2b + ab2 = 128

⇒ a2 b + ab2 = 128 - 8

⇒ a2 b + ab2 = 120

⇒ ab (a + b) = 120

⇒ ab ×\times 8 = 120

⇒ ab = 1208\frac{120}{8}

⇒ ab = 15

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 8 [82 - 3 ×\times 15]

⇒ a3 + b3 = 8 [64 - 45]

⇒ a3 + b3 = 8 ×\times 19

∴ a3 + b3 = 152 


Related Questions:

a+b =12, ab= 22 ആയാൽ a² + b² എത്രയാണ്?
The sum of two numbers is 59 and their product is 840. Find the sum of their squares.
If the sum of two numbers is 11 and the sum of their squares is 65, then the sum of their cubes will be:
What number is x if |x +2|=|x-5|?
8 രൂപ കൂടി കിട്ടിയാൽ രാജുവിന് 100 രൂപ തികയ്ക്കാമായിരുന്നു. എങ്കിൽ രാജ്യവിൻ്റെ കൈയ്യിൽ എത്ര രൂപയുണ്ട്?