App Logo

No.1 PSC Learning App

1M+ Downloads

If a = 355, b = 356, c = 357, then find the value of a3 + b3 + c3 - 3abc.

A3206

B3202

C3204

D3208

Answer:

C. 3204

Read Explanation:

Solution:

Given:

a = 355 

b = 356 

c = 357

Formula used:

a3 + b3 + c3 - 3abc = (12)×(a+b+c)×(\frac{1}{2})\times(a+b+c)\times[(a – b)2 + (b – c)2 + (c – a)2]

Calculations:

a3 + b3 + c3 - 3abc = (12)×(355+356+357)×\frac{1}{2})\times(355+356+357)\times[(355 – 356)2 + (356 – 357)2 + (357 – 355)2]

(12)×(1068)×(1+1+4)(\frac{1}{2})\times(1068)\times(1+1+4)

534×6534\times{6}

⇒ 3204

∴ The value of a3 + b3 + c3 - 3abc is 3204



Related Questions:

If x479x2+1=0x^4-79x^2+1=0then the value of x+x1x+x^{-1} can be;

(203 + 107)² - (203 - 107)² = ?
9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is:

a-(b-(c-d)) =................