App Logo

No.1 PSC Learning App

1M+ Downloads

If a = 355, b = 356, c = 357, then find the value of a3 + b3 + c3 - 3abc.

A3206

B3202

C3204

D3208

Answer:

C. 3204

Read Explanation:

Solution:

Given:

a = 355 

b = 356 

c = 357

Formula used:

a3 + b3 + c3 - 3abc = (12)×(a+b+c)×(\frac{1}{2})\times(a+b+c)\times[(a – b)2 + (b – c)2 + (c – a)2]

Calculations:

a3 + b3 + c3 - 3abc = (12)×(355+356+357)×\frac{1}{2})\times(355+356+357)\times[(355 – 356)2 + (356 – 357)2 + (357 – 355)2]

(12)×(1068)×(1+1+4)(\frac{1}{2})\times(1068)\times(1+1+4)

534×6534\times{6}

⇒ 3204

∴ The value of a3 + b3 + c3 - 3abc is 3204



Related Questions:

If x - 2y = 3 and xy = 5, find the value of x24y2x^2-4y^2

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

If 2(a2+b2)=(a+b)22(a^2 + b^2) = (a + b)^2 then,

P(x)= x²+ax+b and P(-m)-P(-n)-0. Then (m+1) (n+1) is:

If the sum of the roots of the quadratic equation $5x^2+bx+4=0 is 9, the find the value of b.