App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b + c = 6, a3 + b3 + c3 - 3 abc = 342, and a2 + b2 + c2 = 50, then what is the value of ab + bc + ca?

A5

B-5

C-7

D8

Answer:

C. -7

Read Explanation:

Solution:

Given :-

If a + b + c = 6, a3 + b3 + c3 - 3abc = 342, and a2 + b2 + c2 = 50

Concept :- 

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

Calculation :-

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

⇒ 342 = 6 ×\times (50 - ab - bc - ca)

(3426)(\frac{342}{6}) = 50 - (ab + bc + ca)

⇒ 57 = 50 - (ab + bc + ca)

⇒ (ab + bc + ca) = 50 - 57 

⇒ (ab + bc + ca) = -7

∴ (ab + bc + ca) is -7


Related Questions:

Examine the nature of the roots of the following quadratic equation:

3x2+8x+4=03x^2+8x+4=0

If the reciprocal of 1-x is 1+x, then what number is x ?
9 added to the product of two consecutive multiples of 6 gives 729. What are the numbers?

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഗണിത പഠനത്തിന് ഏറ്റവും അനുയോജ്യമായ സോഫ്റ്റവെയർ ഏത് ?