App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b + c = 6, a3 + b3 + c3 - 3 abc = 342, and a2 + b2 + c2 = 50, then what is the value of ab + bc + ca?

A5

B-5

C-7

D8

Answer:

C. -7

Read Explanation:

Solution:

Given :-

If a + b + c = 6, a3 + b3 + c3 - 3abc = 342, and a2 + b2 + c2 = 50

Concept :- 

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

Calculation :-

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)

⇒ 342 = 6 ×\times (50 - ab - bc - ca)

(3426)(\frac{342}{6}) = 50 - (ab + bc + ca)

⇒ 57 = 50 - (ab + bc + ca)

⇒ (ab + bc + ca) = 50 - 57 

⇒ (ab + bc + ca) = -7

∴ (ab + bc + ca) is -7


Related Questions:

x - y = 4, x² + y² =10 ആയാൽ x + y എത്ര?

Find the nature of roots of the quadratic equation:

x2+16x+64=0x^2+16x+64=0

Is (x2)2+1=2x3(x-2)^2+1=2x-3 a quadratic equation, then find the roots

2x - 3y is a factor of:

Solve x2+5x+6x^2+5x+6