If a + b + c = 6, a3 + b3 + c3 - 3 abc = 342, and a2 + b2 + c2 = 50, then what is the value of ab + bc + ca? A5B-5C-7D8Answer: C. -7 Read Explanation: Solution:Given :-If a + b + c = 6, a3 + b3 + c3 - 3abc = 342, and a2 + b2 + c2 = 50Concept :- a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)Calculation :-a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc -ca)⇒ 342 = 6 ×\times× (50 - ab - bc - ca)⇒ (3426)(\frac{342}{6})(6342) = 50 - (ab + bc + ca)⇒ 57 = 50 - (ab + bc + ca)⇒ (ab + bc + ca) = 50 - 57 ⇒ (ab + bc + ca) = -7∴ (ab + bc + ca) is -7 Read more in App