If CosA=35CosA=\frac{3}{5}CosA=53, Find tanA? A43\frac{4}{3}34B23\frac{2}{3}32C34\frac{3}{4}43D54\frac{5}{4}45Answer: 43\frac{4}{3}34 Read Explanation: CosA=AdjHypCos A= \frac{Adj}{Hyp}CosA=HypAdj=35=\frac{3}{5}=53Hypo2=Base2+Adj2Hypo^2=Base^2+Adj^2Hypo2=Base2+Adj252=Base2+325^2=Base^2+3^252=Base2+32Base2=25−9Base^2=25-9Base2=25−9Base2=16Base^2=16Base2=16Base=4Base=4Base=4tanA=oppAdjtan A=\frac{opp}{Adj}tanA=Adjopp=43=\frac{4}{3}=34 Read more in App