Challenger App

No.1 PSC Learning App

1M+ Downloads

If CosA=35CosA=\frac{3}{5}, Find tanA?

A43\frac{4}{3}

B23\frac{2}{3}

C34\frac{3}{4}

D54\frac{5}{4}

Answer:

43\frac{4}{3}

Read Explanation:

CosA=AdjHypCos A= \frac{Adj}{Hyp}

=35=\frac{3}{5}

Hypo2=Base2+Adj2Hypo^2=Base^2+Adj^2

52=Base2+325^2=Base^2+3^2

Base2=259Base^2=25-9

Base2=16Base^2=16

Base=4Base=4

tanA=oppAdjtan A=\frac{opp}{Adj}

=43=\frac{4}{3}


Related Questions:

AB = 6, AC = 4, ∠ BAC = 600 എന്നീ വശങ്ങളുള്ള സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക.

1000114769.jpg
If tan 45o + sec 60o = x, fine the value of x.
If sin A + sin²A = 1, then the value of the expression (cos² A + cos⁴A) =

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is:

Find the distance between top and bottom side of the parallelogram ABCD with side AC = 8, angle BAC = 60°

1000114769.jpg