Challenger App

No.1 PSC Learning App

1M+ Downloads

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

A2

B1

C0

D-1

Answer:

C. 0

Read Explanation:

The value of (-1) raised to a power depends on whether the power is even or odd:

  • If the power is even, $(-1)^{even} = 1$

  • If the power is odd, $(-1)^{odd} = -1$

We know that x + y = 11, which is an odd number.

For the sum of two whole numbers to be odd, one of the numbers must be even, and the other must be odd.

Therefore, we have two possibilities:

  1. x is even, y is odd:

    • $(-1)^x = 1$

    • $(-1)^y = -1$

    • $(-1)^x + (-1)^y = 1 + (-1) = 0$

  2. x is odd, y is even:

    • $(-1)^x = -1$

    • $(-1)^y = 1$

    • $(-1)^x + (-1)^y = -1 + 1 = 0$

In both cases, the result is 0.

Therefore, $(-1)^x + (-1)^y = 0$.


Related Questions:

Find the degree of the polynomial : (x² + 2)²

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

If the sum of the squares of the digits of a two-digit number is 13, then what would be the sum of all the possible combinations of the digits?

A borrows an amount from B and promises to return the amount with two third of it as interest after 2 years. C borrows Rs.1,000 from B and pays it back after 2 years with 255 interest. If A and C pays the same amount, how much did A borrow ?

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .