Challenger App

No.1 PSC Learning App

1M+ Downloads

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

A2

B1

C0

D-1

Answer:

C. 0

Read Explanation:

The value of (-1) raised to a power depends on whether the power is even or odd:

  • If the power is even, $(-1)^{even} = 1$

  • If the power is odd, $(-1)^{odd} = -1$

We know that x + y = 11, which is an odd number.

For the sum of two whole numbers to be odd, one of the numbers must be even, and the other must be odd.

Therefore, we have two possibilities:

  1. x is even, y is odd:

    • $(-1)^x = 1$

    • $(-1)^y = -1$

    • $(-1)^x + (-1)^y = 1 + (-1) = 0$

  2. x is odd, y is even:

    • $(-1)^x = -1$

    • $(-1)^y = 1$

    • $(-1)^x + (-1)^y = -1 + 1 = 0$

In both cases, the result is 0.

Therefore, $(-1)^x + (-1)^y = 0$.


Related Questions:

What is the reminder when 41004^{100}is divided by 7 ?

The sum of four times a number and 3 times of another number is 43. The difference of two times the second number from three times of the first number is 11. Find the numbers.

x1x=3x-\frac{1}{x}=3 then x31x3=x^3-\frac{1}{x^3}=

ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be