App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y = 4, then the value of (x3 + y3 + 12xy) is

A64

B16

C4

D256

Answer:

A. 64

Read Explanation:

Solution:

Given:

x + y = 4

Formula Used:

(x + y)3 = x3 + y3 + 3xy (x + y)

Calculation:

Here, x + y = 4

So, x3 + y3 + 12xy = x3 + y3 + 3xy ×\times 4

⇒ x3 + y3 + 12xy = x3 + y3 + 3xy (x + y) = (x + y)3

⇒ x3 + y3 + 12xy = 43

⇒ x3 + y3 + 12xy = 64

∴ The value of x3 + y3 + 12xy is 64.


Related Questions:

x = 100, y = 0.05 ആയാൽ ചുവടെ കൊടുത്തിട്ടുള്ളവയിൽ ഏറ്റവും വലുത് ഏത് ?

If x1x=3x-\frac{1}{x} = 3, then the value of x31x3x^3-\frac{1}{x^3} is

(203 + 107)² - (203 - 107)² = ?

If the sum of the squares of the digits of a two-digit number is 13, then what would be the sum of all the possible combinations of the digits?

If a = 299, b = 298, c = 297 then the value of 2a3 + 2b3 + 2c3 – 6abc is: