If x + y = 4, then the value of (x3 + y3 + 12xy) is A64B16C4D256Answer: A. 64 Read Explanation: Solution:Given:x + y = 4Formula Used:(x + y)3 = x3 + y3 + 3xy (x + y)Calculation:Here, x + y = 4So, x3 + y3 + 12xy = x3 + y3 + 3xy ×\times× 4⇒ x3 + y3 + 12xy = x3 + y3 + 3xy (x + y) = (x + y)3⇒ x3 + y3 + 12xy = 43⇒ x3 + y3 + 12xy = 64∴ The value of x3 + y3 + 12xy is 64. Read more in App