App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y = 4, then the value of (x3 + y3 + 12xy) is

A64

B16

C4

D256

Answer:

A. 64

Read Explanation:

Solution:

Given:

x + y = 4

Formula Used:

(x + y)3 = x3 + y3 + 3xy (x + y)

Calculation:

Here, x + y = 4

So, x3 + y3 + 12xy = x3 + y3 + 3xy ×\times 4

⇒ x3 + y3 + 12xy = x3 + y3 + 3xy (x + y) = (x + y)3

⇒ x3 + y3 + 12xy = 43

⇒ x3 + y3 + 12xy = 64

∴ The value of x3 + y3 + 12xy is 64.


Related Questions:

(b – c)(b + c) + (c – a)(c + a) + (a – b) (a + b) എന്നതിൻ്റെ മൂല്യം കണ്ടെത്തുക
image.png

In the expansion of (2x+y)3(2xy)3(2x + y )^3-(2x - y)^3, the coefficient of x2yx^2y is:

If the sum of two numbers is 11 and the sum of their squares is 65, then the sum of their cubes will be:
image.png