If x−1x=3x-\frac{1}{x} = 3x−x1=3, then the value of x3−1x3x^3-\frac{1}{x^3}x3−x31 is A36B63C99DNone of theseAnswer: A. 36 Read Explanation: Solution:Given:x−1x=3x-\frac{1}{x} = 3x−x1=3Concept used:a3 - b3 = (a - b)3 + 3ab(a - b)Calculation:x3−1x3=(x−1x)3+3×x×1x×(x−1x)x^3-\frac{1}{x^3}=(x-\frac{1}{x})^3+3\times{x}\times{\frac{1}{x}}\times{(x-\frac{1}{x})}x3−x31=(x−x1)3+3×x×x1×(x−x1)⇒(x−1x)3+3(x−1x)⇒(x-\frac{1}{x})^3+3(x-\frac{1}{x})⇒(x−x1)3+3(x−x1)⇒(3)3+3×3⇒(3)^3+3\times{3}⇒(3)3+3×3⇒ 27 + 9 = 36∴ The value of is x3−1x3x^3-\frac{1}{x^3}x3−x31 36. Read more in App