App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 10, x3+y3+z3=75x^3 + y^3 + z^3 = 75 and xyz = 15, then find the value of x2+y2+z2xyyzzxx^2 + y^2 + z^2-xy-yz-zx

A3

B5

C6

D4

Answer:

A. 3

Read Explanation:

Solution:

Given:

x + y + z = 10, (x3 + y3 + z3) = 75 and xyz = 15

Formula:

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

Calculation:

According to the given formula

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 3 ×\times 15 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 45 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ (x2 + y2 + z2 - xy - yz - zx) = 3010\frac{30}{10} 

∴ x2 + y2 + z2 - xy - yz - zx = 3

Hence option(A) is correct answer.


Related Questions:

a-(b-(c-d)) =................
Project method is best suitable for:

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

If 1138=a+b2\sqrt{11-3\sqrt{8}}=a+b\sqrt{2}, then what is the value of (2a+3b)?

x and y are two positive integers x-y and x+y are two prime numbers. Then y is: