If x + y + z = 10, x3+y3+z3=75 and xyz = 15, then find the value of x2+y2+z2−xy−yz−zx
A3
B5
C6
D4
Answer:
A. 3
Read Explanation:
Solution:
Given:
x + y + z = 10, (x3 + y3 + z3) = 75 and xyz = 15
Formula:
(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Calculation:
According to the given formula
(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
⇒ 75 - 3 × 15 = 10 × (x2 + y2 + z2 - xy - yz - zx)
⇒ 75 - 45 = 10 × (x2 + y2 + z2 - xy - yz - zx)
⇒ (x2 + y2 + z2 - xy - yz - zx) = 1030
∴ x2 + y2 + z2 - xy - yz - zx = 3
Hence option(A) is correct answer.