App Logo

No.1 PSC Learning App

1M+ Downloads
If 3/11 < x/3 < 7/11, which of the following values can 'x' take?

A1

B0.5

C2

D3

Answer:

A. 1

Read Explanation:

  1. Multiply all parts of the inequality by 3:

    • (3/11) 3 < (x/3) 3 < (7/11) * 3

    • 9/11 < x < 21/11

  2. Convert the fractions to decimals (approximately) to make it easier to visualize:

    • 9/11 ≈ 0.818

    • 21/11 ≈ 1.909

    • So, 0.818 < x < 1.909

  3. Consider possible integer values of x:

    • The possible integer values of 'x' that fall within this range are 1.

  4. Consider possible fractional values of x

    • There are an infinite amount of fractional values that will also fall within this range.

Therefore, the integer value x can take is 1.


Related Questions:

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to

If a- =1/a=3, then what is a3-1/a3 ?

x - y = 4, x² + y² =10 ആയാൽ x + y എത്ര?
-125,965,-367______എന്നീ നാലു സംഖ്യകളുടെ തുക പൂജ്യം ആയാൽ നാലാമത്തെ സംഖ്യ ഏത്?