If x4+x41=34, then the value of (x−x1)2 will be
A7
B-7
C-3
D4
Answer:
D. 4
Read Explanation:
Solution:
x4+x41=34
⇒ adding 2 on both side we get
⇒x4+(x41+2=34+2
⇒(x2)2+(x21)2+2×x2×x21=36
⇒(x2+x21)2=36
⇒(x2+x21)=6 -----1
⇒ we need to find the value of (x−x1)2
(x−x1)2=x2+x21−2×x×x1
⇒ put the value from equation 1 in above equation we will get
(x−x1)2=6−2
∴ (x−x1)2=4