App Logo

No.1 PSC Learning App

1M+ Downloads

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

A7

B-7

C-3

D4

Answer:

D. 4

Read Explanation:

Solution:

x4+1x4=34x^4+\frac{1}{x^4}=34

⇒ adding 2 on both side we get

x4+(1x4+2=34+2⇒x^4+(\frac{1}{x^4}+2=34+2

(x2)2+(1x2)2+2×x2×1x2=36⇒(x^2)^2+(\frac{1}{x^2})^2+2\times{x^2}\times{\frac{1}{x^2}}=36

(x2+1x2)2=36(x^2+\frac{1}{x^2})^2=36

(x2+1x2)=6(x^2+\frac{1}{x^2})=6     -----1

⇒ we need to find the value of (x1x)2(x-\frac{1}{x})^2

(x1x)2=x2+1x22×x×1x(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2\times{x}\times{\frac{1}{x}}

⇒ put the value from equation 1 in above equation we will get

(x1x)2=62(x-\frac{1}{x})^2=6-2

(x1x)2=4(x-\frac{1}{x})^2=4


Related Questions:

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

If (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5, then (3a + 5b) : (9a - 2b) =?

If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7, thenfind a3+1a3a^3+\frac{1}{a^3}.

If the sum and product of two numbers are respectively 40 and 375, then find the numbers

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is: