App Logo

No.1 PSC Learning App

1M+ Downloads

The value of 5.35×5.35×5.35+3.65×3.65×3.6553.5×53.5+36.5×36.553.5×36.5\frac{5.35\times{5.35}\times{5.35}+3.65\times{3.65}\times{3.65}}{53.5\times{53.5}+36.5\times{36.5}-53.5\times{36.5}} is:

A9

B0.9

C90

D0.09

Answer:

D. 0.09

Read Explanation:

Solution:

Identity used:

(a3 + b3) = (a + b) × (a2 + b2 – ab)

Calculation:

5.35×5.35×5.35+3.65×3.65×3.6553.5×53.5+36.5×36.553.5×36.5\frac{5.35\times{5.35}\times{5.35}+3.65\times{3.65}\times{3.65}}{53.5\times{53.5}+36.5\times{36.5}-53.5\times{36.5}}

(5.35)3+(3.65)3(53.5)2+(36.5)253.5×36.5⇒\frac{(5.35)^3+(3.65)^3}{(53.5)^2+(36.5)^2-53.5\times{36.5}}

(5.35)3+(3.65)3100×[(5.35)2+(3.65)25.35×3.65]⇒\frac{(5.35)^3+(3.65)^3}{100\times[{(5.35)^2+(3.65)^2-5.35\times{3.65}}]}

ie., a3+b3a2+b2ab=a+b\frac{a^3+b^3}{a^2+b^2-ab}=a+b

Here a=5.35,b=3.65a=5.35 ,b= 3.65

5.35+3.65100⇒\frac{5.35+3.65}{100}

9100⇒ \frac{9}{100}

∴ 0.09


Related Questions:

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

An aeroplane is moving at a constant altitude 'h'. At 10:00 AM, it is seen at an elevation of 30°. 1 minute later, it is observed at an elevation of 60°. If the speed of the plane is 960 km/h, then find 'h'.
Equation of a line passing through (2, 3) which is perpendicular to the line 5x+2y-8-0 is:
If b² - 4ac < 0 then the roots of the quadratic equation are _____
X # Y = XY + x - Y ആണ് എങ്കിൽ (6#5)× (3#2) എത്ര?