if x+y+z=11x+y+z=11x+y+z=11 and xy+yz+zx=42xy+yz+zx=42xy+yz+zx=42 then the value of x2+y2+z2x^2+y^2+z^2x2+y2+z2 is: A41B37C39D43Answer: B. 37 Read Explanation: (x+y+z)2=x2+y2+z2+2(xy+yx+xz)(x+y+z)^2=x^2+y^2+z^2+2(xy+yx+xz)(x+y+z)2=x2+y2+z2+2(xy+yx+xz)(x+y+z)2=112(x+y+z)^2=11^2(x+y+z)2=112x2+y2+z2+2(xy+yx+xz)=121x^2+y^2+z^2+2(xy+yx+xz)=121x2+y2+z2+2(xy+yx+xz)=121x2+y2+z2+2(42)=121x^2+y^2+z^2+2(42)=121x2+y2+z2+2(42)=121x2+y2+z2+84=121x^2+y^2+z^2+84=121x2+y2+z2+84=121x2+y2+z2=121−84x^2+y^2+z^2=121-84x2+y2+z2=121−84x2+y2+z2=37x^2+y^2+z^2=37x2+y2+z2=37 Read more in App