App Logo

No.1 PSC Learning App

1M+ Downloads

In the figure <CAB=30°, <CPB=60°. AP 10 centimeters. Area of the rectangle ABCD is.............................. square centimeters.

WhatsApp Image 2024-11-30 at 10.23.08.jpeg

A25(2+√3)

B25 (1+√3)

C75

D75√3

Answer:

D. 75√3

Read Explanation:

In △ APC

∠ APC = 180° - 60° = 120°

So ∠ACP = 180° - (120 + 30 ) = 30°

Triangle APC is an isosceles triangle

So AP = PC = 10 cm

In △ PBC

∠ PBC = 90°

∠ BPC = 60°

∠ PCB = 30°

Ratio 30° : 60° : 90° = 1 : 3 : 2

PC = 2 = 10cm

PB = 1 = 5

BC = 5√3

So,

AB = 15 cm

BC = 5√3

Area of ABCD = length × breadth

= 15 × 5√3

= 75√3 cm²


Related Questions:

If xsin30°cos60° = sin45°cos45°, then the value of x is:
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

What is the value of sin2 45° + cos2 45° ?

If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:
image.png