The total surface area of a solid hemisphere is 108π108\pi108π cm2. The volume of the hemisphere is A72π72\pi72πB144π144\pi144πC1086108\sqrt{6}1086D54654\sqrt{6}546Answer: 144π144\pi144π Read Explanation: If the radius of the solid hemisphere be r cm,then total surface area =3πr2= 3\pi{r^2}=3πr23πr2=108π3\pi{r^2}=108\pi3πr2=108πr2=1083r^2=\frac{108}{3}r2=3108r=36r=\sqrt{36}r=36r=6cmr=6cmr=6cmVolume of the hemisphere =23πr3=\frac{2}{3}\pi{r^3}=32πr3=23π×63=\frac{2}{3}\pi\times{6^3}=32π×63=144πcucm=144\pi cucm=144πcucm Read more in App