App Logo

No.1 PSC Learning App

1M+ Downloads

What is the remainder when (255+323)(2^{55}+3^{23}) is divided by 5?

A0

B1

C2

D3

Answer:

A. 0

Read Explanation:

Shortcut Trick

(255+323)(2^{55}+3^{23})

Power of 2 = 55÷455\div{4} = Remainder is 3 

Power of 3 = 23÷423\div{4} = Remainder is 3 

Then,

(23 + 33) ÷ 5

⇒ (8 + 27) ÷ 5 

⇒ 35 ÷ 5 = 7, which means here remainder is 0.

Alternate Method

We can write, 255 = (24)13 × 23

⇒ Unit digit (255) = Unit digit (1613 ×\times 8)

⇒ Unit digit (255) = Unit digit (613 ×\times 8)

⇒ Unit digit (255) = Unit digit (6 ×\times 8) = 8

Similarly

,

We can write, 323 = (34)5 ×\times 33

⇒ Unit digit (323) = Unit digit (815 ×\times 7)

⇒ Unit digit (323) = Unit digit (15 ×\times 7)

⇒ Unit digit (323) = 7

Now,

Unit digit (255 + 323) = Unit digit (8 + 7) = 5

∵ When 5 is divided by 5, the remainder is 0

∴ When (255 + 323) is divided by 5, the remainder is 0.


Related Questions:

What is the greatest number, by which when 8954, 9806 and 11297 are divided, the remainder in each case is the same?

If 3x2+ax+123x^2+ax+12 is perfectly divisible by(x – 3),then the value of ‘a’ is:

Which of the following numbers is divisible by 11?
What is the smallest 5-digit number exactly divisible by 999?
82178342*52 എന്ന സംഖ്യ 11-ൽ ഭാഗിക്കുക എന്നതിന് *-ന്റെ ഏറ്റവും കുറഞ്ഞ മൂല്യം കണ്ടെത്തുക.