Challenger App

No.1 PSC Learning App

1M+ Downloads
The area (in square units) of the quadrilateral ABCD, formed by the vertices A (0, -2), B (2, 1), C (0, 4), and D (-2, 1) is:

A12

B14

C15

D13

Answer:

A. 12

Read Explanation:

12

Area =1/2​[x1​(y2​−y3​)+x2​(y3​−y1​)+x3​(y1​−y2​]


Related Questions:

16 cm വശമുള്ള ഒരു സമചതുരത്തിനെ വളച്ച് 10cm വീതിയുള്ള ഒരു ചതുരം ആക്കി മാറ്റിയാൽ അതിന്റെ വിസ്തീർണം :

ചിത്രത്തിൽ ABCD ഒരു സാമാന്തരികം ആണ്. <A=110° ആയാൽ <B യുടെ അളവ് എന്ത് ?

WhatsApp Image 2025-02-01 at 13.22.08.jpeg
PA and PB are two tangents from a point P outside the circle with centre O. If A and B are points on the circle such that ∠APB = 128°, then ∠OAB is equal to:
In a ΔABC, angle bisector of B and C meet at point P such that ∠BPC = 127˚. What is the measure of ∠A?
∆ABC are ∆QPR are similar and AB = 12 cm, AC = 9 cm, PQ = 8 cm, and QR = 6 cm. Length of median BD is 10 cm, then find the length of corresponding median in ∆PQR.