Challenger App

No.1 PSC Learning App

1M+ Downloads
The sides of two squares are in the ratio 4 : 3 and the sum of their areas is 225 cm2. Find the perimeter of the smaller square (in cm).

A44

B30

C36

D48

Answer:

C. 36

Read Explanation:

Solution: Given: The sides of two squares [(S1) and (S2)] are in the ratio 4 : 3 The sum of their Areas is 225 cm2. Formula used: The Perimeter (P) of the smaller square = 4 (side) Area of a Square = (side)2 Calculations: According to the question, S1/S2 = 4/3 ⇒ S1 = 4(S2)/3, and Then Areas of the Square: (S1)2 + (S2)2 = 225 ⇒ (4S2/3)2 + (S2)2 = 225 ⇒ 16(S2)2/9 + (S2)2 = 225 ⇒ 25 (S2)2/9 = 225 ⇒ 25 (S2)2 = 2025 ⇒ (S2)2 = 2025/25 ⇒ (S2)2 = 81 = 9 cm ⇒ S1 = (4 × 9)/3 ⇒ S1 = 36/3 = 12 cm The perimeter of the smaller square: ⇒ P = 4 × 9 = 36 cm ∴ The perimeter of the smaller square will be 36 cm.


Related Questions:

The length of a rectangle is 25\frac{2}{5} of the radius of a circle. The radius of the circle is equal to the side of a square whose area is 4900 m2. What is the area (in m2) of the rectangle, if its breadth is 20 m?

The Volume of hemisphere is 155232 cm3.What is the radius of the hemisphere?

4 സെ. മീ. ആരമുള്ള കട്ടിയായ ഗോളം ഉരുക്കി 2 സെ. മീ. ആരമുള്ള ചെറു ഗോളങ്ങളാക്കിയാൽ എത്ര ഗോളങ്ങൾ കിട്ടും ?
ചുവടെ തന്നിരിക്കുന്നവയിൽ ത്രികോണം നിർമിക്കാൻ സാധ്യമല്ലാത്ത അളവ് :
A path of uniform width runsround the inside of a rectangularfield 38 m long and 32 m wide.If the path occupies 600sq.m, then the width of the path is