Challenger App

No.1 PSC Learning App

1M+ Downloads
The sides of two squares are in the ratio 4 : 3 and the sum of their areas is 225 cm2. Find the perimeter of the smaller square (in cm).

A44

B30

C36

D48

Answer:

C. 36

Read Explanation:

Solution: Given: The sides of two squares [(S1) and (S2)] are in the ratio 4 : 3 The sum of their Areas is 225 cm2. Formula used: The Perimeter (P) of the smaller square = 4 (side) Area of a Square = (side)2 Calculations: According to the question, S1/S2 = 4/3 ⇒ S1 = 4(S2)/3, and Then Areas of the Square: (S1)2 + (S2)2 = 225 ⇒ (4S2/3)2 + (S2)2 = 225 ⇒ 16(S2)2/9 + (S2)2 = 225 ⇒ 25 (S2)2/9 = 225 ⇒ 25 (S2)2 = 2025 ⇒ (S2)2 = 2025/25 ⇒ (S2)2 = 81 = 9 cm ⇒ S1 = (4 × 9)/3 ⇒ S1 = 36/3 = 12 cm The perimeter of the smaller square: ⇒ P = 4 × 9 = 36 cm ∴ The perimeter of the smaller square will be 36 cm.


Related Questions:

ഒരു ദീർഘ ചതുരത്തിന്റെ വശങ്ങൾ 3:2 എന്ന അനുപാതത്തിലാണ്. അതിന്റെ ചുറ്റളവ് 180 മീറ്ററായാൽ നീളമെന്ത്?
If the diagonals of two squares are in the ratio of 2 : 5, their area will be in the ratio of
Radius of a circular wheel is 21 cm. Find the number of revolutions done by wheel to cover the distance of 924 m.
ചതുരാകൃതിയിലുള്ള ഒരു ഇരുമ്പ് കട്ടയുടെ നീളം 25 സെ.മീറ്ററും വീതി 10 സെ.മീറ്ററും ഉയരം 4 സെ.മീറ്ററും ആണ്. ഇത് ഉരുക്കി ഒരു സമചതുരക്കട്ട ഉണ്ടാക്കിയാൽ ഒരു വശത്തിന്റെ നീളം എത്ര ?
A hall 25 metres long and 15 metres broad is surrounded by a verandah of uniform width of 3.5 metres. The cost of flooring the verandah, at 27.50 per square metre is